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ABSTRACT

This paper deals with the active control of a space multi-
body system, composed by a two link rigid manipulator and a
large flexible truss. The manipulator is a two-link robot with
all its parts completely rigid and three joints for its motion.
The truss is a typical large space truss with low frequency
vibration modes. In particular the truss shape control and
manipulator positioning control are investigated using recur-
rent neural networks. Autoncmous controllers are designed for
each robot joint to control the manipulator position and move-
ment along the truss and for the truss to damp the vibrations
induced by the robot motion. Recurrent networks allow to de-
sign adaptive controllers, capable to cope with the non linear,
time varying dynamics produced by the robot motion. The
use of recurrent neural controllers for this application reduces
the effort in the system modeling. In fact, the controllers are
able to adapt to time varying situations, so even the changes
in inertial characteristics due to the relative motion between
truss and manipulator are automatically taken into account in
a transparent way, once a suitable structure of the recurrent
networks has been designed.
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The huge dimension of the International Space Sta-
tion (ISS) introduces new problems never dealt with
on previous orbital bases or other space systems.
Structures like ISS are named Large Space Structures
(L.SS). One of the most important characteristics of
a LSS is to have low frequency vibration modes. In-
ternal disturbances (like crew movements) and ex-
ternal disturbances (e.g., due to interactions with a
docked shuttle) produce oscillations on flexible parts
that stay on for a long time.

The complete analysis of this kind of systems requires
a wide investigation: it ranges from the dynamics,
identification and control strategies, position control
and reaction forces among parts.

In particular interaction between two bodies, one of
them flexible, with relative motion was studied in a
limited situation. Most papers are relative to atti-
tude dynamic coupling with rigid and flexible parts.
Just few papers deal with shape control and relative
movement among bodies.

Silverberg and Park (1990) developed a theoreti-
cal analysis showing the relevant interactions among
rigid and flexible bodies during space maneuvers.
Chan and Modi (1989) presented a Lagrange formu-
lation to study the attitude of a flexible base with
two rigid appendices. Bennett et al. (1994) tested a
non-linear control strategy based on Partial feedback
linearization (PFL). _
The study developed by Messac (1996) is closer to the
work presented in this paper. The author developed
an analytical approach limited to the dynamic behav-
ior of a time-varying system constituted by a trolley
moving on a beam. The system equations of motion
were built independently and then joined together in
one system to be solved with a classical method.
Yangsheng and Ueno (1994) analyzed the model of a
space manipulator with five degrees of freedom with a



gravity compensation control system to simulate zero
gravity conditions. He developed both a rigid and
flexible model and made experimental tests.
Bernelli-Zazzera and Ercoli-Finzi (1996) verified the
behavior of a system constituted by a flexible truss
and a manipulator with two links. The fruss dynam-
ics appears strongly connected to the manipulator dy-
namics since the low frequency vibration modes of the
structure are close to the manipulator frequencies.
The present paper too is focused on the control of the
dynamics of a space system composed by a manipn-
lator and a truss with low [requency vibration modes.
In particular, starting from previous experimental
works (Bernelli-Zazzera and Lo-Rizzo, 1997, Bernelli-
Zazzera and Lo-Rizzo, 1999), we tested, through nu-
merical simulations, the adaptability of a recurrent
neural oscillation control to the relevant variations of
inertial characteristics, induced by the movement of
the manipulator on the truss. A position control of
the manipulator has been furthermore realized, inde-
pendent from the control of the truss, but using the
same neural architecture. The main issue becomes
then to structure the recurrent networks in such a
way to allow them to “learn” the system behavior
faster than the robot motion. Once this effort is com-
pleted, the neural networks can properly control the
time varying system without any need to model the
structure of the time dependent dynamic interactions
between truss and manipulator. This feature repre-
sents a great simplification in system modeling, al-
though the range of validity of the proposed approach
has not been theoretically demonstrated yet. In the
present application, the robot has successtully com-
pleted a maneuver along the entire span of the truss.
The paper is organized as follows: first a detailed de-
scription of the space system used for the simulations
will be reported, followed by an introduction to the
methodology used for the identification and control,
then the identification and control strategy applied
to the truss and to the manipulator will be presented
and finally the simulation results will be discussed.

DESCRIPTION OF THE MULTIBODY
SYSTEM

The multibody system considered is composed by two
main subsystems: a 3 degrees of freedom planar ma-
nipulator with two rigid links and a flexible structure
with truss topology.

The Truss

The truss considered for simulations corresponds to a
real reticular structure named Truss Experiment for
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Table 1. Physical characteristics of the truss.
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Fig.1. Scheme of the truss TESS.

Space Structures (TESS), set up in the laboratory of
the Aerospace Engineering Department of Politecnico
di Milano (Bernelli-Zazzera and Lo-Rizzo, 1997). It
is a modular structure with longitudinal growth and
square section (Fig.1).

The complete length of the structure is 19.062 meters.
The truss is composed of 54 cubic modules (Fig.2).
Each module has section size of 0.353m and spheri-
cal joints and tube rods, made of PVC, constitute it.
Table 1 reports the main physical characteristics of
TESS.

For simulations the structure is considered completely
free to move in space, without gravity and con-
straints. The finite element model used for the simu-
lations has already been validated by a large number
of experimental tests. That FE model is here taken
in account with the exclusion of the six constraining
springs used to sustain the truss on the laboratory
ceiling (Bernelli-Zazzera and Lo-Rizzo, 1997).

The first non-rigid modes, which are bending modes,
are reported in Table 2.

The Manipulator

The manipulator used for the simulation is a three
rotational degrees of freedom planar robot with two
links (Fig.3). The links have a distributed mass along
a line between joints. The overall joint systems, com-
prehensive of torque motors and connection clements,
are modeled as lumped masses placed on the axes of
the joints. Table 3 reports all inertial and material
characteristics. All parts of the manipulator are con-
sidered rigid.

The geometrical lengths and inertial characteristics
have been chosen to be realistic. In this way these
simulation results and the identification and control
parameters could be used as starting point for a pos-
sible future experimentation.

Sensors and Actuators
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Fig.2. Scheme of one module of the TESS truss.

Table 2. First bending frequencies.

‘ Number First bending I Mode shape
frequencies |
I 1.2 1.085 (Hz) Horizontal and veruical
{ 34 3.042 (Hz) Horizontal and vertical
| 5.6 5.760 (Hz) Horizontal and vertical
7.8 ] 9317 _(Hz) Horizontal and vertical |

In the simulations, sensors and actuators are virtual
systems; respectively rotation and angular velocity
sensors for the manipulator and accelerometers and
thrusters with continuously variable thrust for the
truss. The data that in reality would be measured
by sensors are instead obtained by integration of the
dynamic equations of motion.

The truss has 4 accelerometers and 8 thrusters, lo-
cated at sections 1,24,32,55 of the truss. The choice
of the location of sensors and actuators is based on
observability and controllability analyses focused on
the first four bending modes. Both sensors and actu-
ators are placed in the points with maximum modal
participation, obtained from a model with the pre-
vious indicated four vibration modes. The actuators
are simply modeled using forces and torques.

Maneuvers

The manipulator moves along an edge of the truss
locking and unlocking the end-effector on truss nodes.
Two different kinds of maneuvers have been simu-
lated: the “acrobat maneuver” and the “grub ma-
neuver”. While the grub maneuver implies a slid-
ing movement of the robot along the truss, the acro-
bat maneuver carries out an overturning movement.
Then the second one generates a much higher level
of disturbance on the truss dynamics and higher mo-
ment of inertia variations and is more interesting from
a control system testing point of view.

"The Acrobat Maneuver

The manipulator displacement during this mancuver
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Fig.3. Manipulator scheme.

Table 3. Physical characteristics of the manipulator.

Inertial Characteristics Link 1 = Link2

Mass 0.39 kg
I 5.1617E-3 kg m®
I 1.3166 E-4 kg m*
L 5.1617E-3kg m*
Material Characteristics Aluminum
Young Modulus 7.170 E+10 kg m™
Poisson Coefficient - 033
Density 2740 kg m’

is described by the image sequence in Fig.4. Consid-
ering Iig.4.a as starting configuration, once the joint
1 is unlocked the movement beginsg and joints 2 and
3 rotate in a negative verse. Link 1 rotates of 5.025
radians with respect to joint 2 while link 2 must ro-
tate of 1.258 radians with respect to joint 3. The
operation continues until the end-effector on joint 1
reaches the contact point at truss node E and is locked
again. That end position is two nodes ahead of the
end-effector starting point.

The Grub Maneuver

In this case the maneuver does not involve any over-
turning of the links. The manecuver starts by un-
locking the end-effector relative to joint 1 and then
rotating link 1 with a positive value of 0.33 radians
with respect to joint 2, while link 2 rotates of a same
but negative value with respect to joint 3. When the
joint 1 reaches point B the first part of the maneuver
ends (Fig.5.b). The second step consists in unlocking
the joint 2 and move it two nodes ahead with respect
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to the end-effector joined to the structure. Link 1
rotates of —0.33 radians on joint 1; link 2 rotates of
0.33 radians on joint 2.

RECURRENT NEURAL NETWORKS

The basis of any neural control method is represented
by the emulation of the inverse dynamics of the phys-
ical system to be controlled. This can be achieved
either by direct or indirect modeling,.

In the direct modeling inversion, a neural network is
trained using as input the measured output of the
physical system. The network output represents the
input that presumably produced the system output,
and its difference with the real input to the system
drives the learning algorithm.

In the indirect modeling inversion instead, the control
network is trained using as input the desired output
of the physical system. The output of the net is the
input to the physical system, and the difference be-
tween the actual and desired system response drives
the learning algorithm. In some cases, the actual sys-
tem ontput is replaced, in the learning algorithm, by
the output of an identification net, fed with the same
input as the actual system. This scheme (Morelli,
1992) is very convenient since it allows an implicit
filtering of the data and a straightforward develop-
ment of the learning algorithm, requiring absolutely
no knowledge of the mathematical model of the dy-
namics of the physical system. So, even if the system
is non-linear and time varying, an adaptive control
based on indirect inversion may be applicable, pro-
vided that the identification net is able to learn faster
than the control net.

The choice of the topology of the identification and
control networks must take into account the neces-
sity of updating all the synaptic weights during each
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sampling period. Use of the popular multi-layer per-
ceptron topologies implies a great number of inputs,
neurons and connections, since a static neural-net
has to monitor current and past measurements. In-
evitably, such a solution makes the computation of all
synaptic weights variations during a short sampling
period impossible. Unfortunately short sampling pe-
riods are imposed by the necessity of avoiding alias-
ing problems. The simplest and most effective way
to identify a dynamic system using ANNs is then to
apply intrinsically dynamic networks. Among these,
the most compact are indeed recurrent networks (RN)
(Haykin, 1994).

A typical fully connected RN is represented in Fig.6.
It consists of a layer of neurons whose one-step de-
layed outputs combined with the external input form
the concatenated input-output layer.

Visible neurons, those giving the predicted output
vector ¥(n + 1), are used to compute the weight
updates while the remaining act as hidden neurons.
Joining the system input and output forms the con-
catenated input-output layer. As will be detailed in
the sequel of the presentation, the system input can
also include, besides the physical inputs (forces), ex-
tra quantities useful to the prediction of the output
vector.

Calling x the vector of ni system inputs, ¥ and ¥
the vectors of no visible and nho hidden outputs of
the network, then at each sampling instant n, the
concatenated input-output layer can be expressed in
vector notation as

()T $* )7

h

u(n) = [x(n)¥ ¥ (1)
The network dynamics is defined by the net internal
activity level v; related to each j-th neuron and by its
sigmoidal activation function ¢ which, in this paper,

has been characterized with a hyperbolic tangent
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ni+no+nho

v;(n) = Z

=1

gi(n+1) = o

wii(n) - wi(n),

v;(n)) = a-tanh (8 v;(n)). (2)

In the above expressions wj; is the generic synaptic
weight connecting the j-th neuron to the i-th concate-
nated input, v and [ are sigmoid amplitude and slope
coeflicients, respectively. In the present work, these
have been always held at the values of /3 and 2/3,
as suggested in the literature (Haykin, 1994, Guyon,
1991).

Williams and Zisper (1989) and Williams and Peng
(1990) derived a learning algorithm for RNs from Ex-
tended Back Propagation (EBP). It is based on the
minimization of the error cost function

E(n) = %e(n)T ~e(n), (3)

where e is the innovation, difference between mea-
sured and one step delayed predicted visible output

e(n) = y(n) - §(n). (4)

At each sampling instant n, the synaptic weight vari-
ation can then be obtained by the steepest descent
method,; also called delta rule. The weight matrix is
updated according to the relation

i JE(n)
Awgi(n) = nc')'wkl(n)"
wr(n + 1) = wrr(n) + Awgy(n), (5)

where 7 represents the learning rate of the network.
The indexes & and 1 range from 1 to the number of
neurons and from 1 to the number of concatenated
inputs, respectively. Recalling Eqs. (2)-(4), the last
factor of Eq.(5) can be calculated at each iteration
starting from its own previous value, from past inputs
and weights, as detailed in the Appendix.

IDENTIFICATION AND CONTROL
STRATEGY

Actual Topologies and Connections Among
Networks

The use of neural controllers for this application has
the advantage of reducing the effort in the system
modeling. The use of Recurrent Neural Networks,
instead of more popular static neural-net, makes the
computation of all synaptic weights variations during
a short sampling period possible.

In the present application network topologies have
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Fig.8. Identification recurrent neural network.

been slightly modified with respect to the classical
recurrent scheme. Two fundamental reasons guided
these modifications. First, the computational time
must not act as a delay in the application of the
desired input to the system. So the networks are
designed as predictive networks, and the proper in-
put to the system is evaluated with one sampling pe-
riod of advance. In a real application this allows for
computational times about as long as the sampling
time. The second motivation for the network modifi-
cation resides in the lack of a supervisor from which
the control net learns to behave. So, the control net
must perform its training process autonomously, on
the basis of the plant inputs and outputs. To make
this possible, system identification must be completed
before the activation of the control network. As de-
picted in Fig.7, the overall system consists therefore
of the identification network working in parallel with
the actual structure, both driven by the control net-
work working with one sampling period of advance.

Figures 8 and 9 represent a detailed layout of the
two networks. The identification net has nho hidden
and no visible neurons. The information about ac-
tual plant dynamics comes directly from the set of
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no accelerometers. This decreases the initial error of
the predicted signals and therefore also the number of
training patterns, but on the other hand it can make
the identification seriously affected by measurement
noise. In the present case, measurement noise is fil-
tered during acquisition and by the hidden neurons
feedback. The identification net concatenated input
layer is then defined as

wie(n) = [y(n)T 3" ()7 y7T £ =117, (6)
where y(n) is the one step delayed predicted output
vector, ¥"(n) is the one step delayed predicted out-
put vector belonging to hidden neurons, y(n) is the
actual plant output vector (the measured accelera-
tions), f(n) represents the command coming from the
control neural net and —1 drives the neuron thresh-
old via its related synaptic weights. For the iden-
tification net, the weight variation is still computed
starting from the prediction error defined as difference
between the actual output and the predicted output
belonging to visible neurons.

On the other hand, the control net is fed with con-
catenated inputs defined by the following expression

i
7

where the predicted output of visible neurons, f(n +
1), is delayed and fed back to the net; it represents
the control command to be furnished to the physical
plant and to the identification net at the next step.
Other inputs to the control network are the actual
plant outputs y(n), the desired output at the next
acquisition ¥(n + 1), coming from a reference model,
and the threshold driver —1.

Control weights update is now based on the er-
ror between desired and predicted visible output.

ur(n) = [f(n)T £(n)T y(n)T y(n + i) et
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No presence of physical plant measurements denotes
that updating control neural weights is conceptually
slightly different from the modified delta rule men-
tioned above. To face uncertainties deriving from
time varying dynamics, the behavior of the physical
system, crucial for the determination of the proper
control action, is recursively captured from the recur-
rent identification neural network working in parallel
with the plant (see Fig.7). This approach modifies the
control learning algorithm, since it must include the
interaction with the identification net. The complete
learning algorithms of the identification and control
networks are collected in the Appendix.

It is pointed out that the performance of the control
net depends on the accuracy of the identification. It
is remarked that this is due to the lack of a super-
visor from which the control RN learns its behavior.
The training process is autonomously realized by the
control network, which monitors the plant input and
output and manipulates control input to make the
predicted output, based on the identified model of
the system, equal to the desired output. To make
this process possible, system identification must be
already completed when the control system begins to
operate to adjust its weights.

Truss Subsystem

The identification network identifies the truss system
using the measured four accelerations, i.e. it gives
a prediction on acceleration corresponding to input
forces: the control network, considering the accelera-
tion values predicted and wanted, in this case zero,
gives, as output, the magnitude of actuator forces
(Fig.10). The Learning phase is based on exciting
the structure with periodic forces having the same
spectrum width of the considered vibration modes of
the truss.

The synaptic weights of the identification network are
updated minimizing the error due to the difference
between the signal of sensors and the output of the
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identification net itself, delayed one step. Instead, the
synaptic weights of the control net are updated min-
imizing the distance between the desired final value
of acceleration, i.e. zero, and the predicted value pro-
duced by the identification network. With reference
to Figs. 8 and 9, the neural nets are defined by no = 4,
nho =6, ni =4, nhi = 6.

Manipulator Subsystem

The same recursive neural network control architec-
ture has been used for the positioning of each joint of
the robot, resulting in three independent systems for
the robot motion control.

Identification inputs are the measured joint angular
position and velocity: The control network produces
the torque values that the electrical-motors must ap-
ply to the manipulator arms to obtain the wanted
final configuration of the robot (Fig.11).

The learning cost function for the control network
is the sum of two errors: the first is the difference
between current and desired position; the second is
the distance between the current and desired velocity.
In this case, for each joint no = 2, nho =4, ni = 1,
nhi = 4. Starting weights for control system of joint
1 and 3 are the same. To obtain them, in the learning
phase, a known motion to joint 1 wﬂ;h joint 2 fixed
was applied. Instead, for joint 2, a known motion has
been applied with joint 1 fixed.

SIMULATION RESULTS

Simulations have been performed using routines writ-
ten with the commercial software for multibody sys-
tems ADAMS. Those ADAMS routines were linked
to the routines implementing the neural networks,
written in FORTRAN. The flexibility of the truss
was considered by introducing the vibration modes
as evaluated by NASTRAN, and coupling them to
the rigid parts directly modeled by ADAMS. The ac-
tuators are simply modeled using forces and torques
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Fig.12. Angle displacements of the two links during
one step of the acrobat maneuver.

defined by the multibody program.

The first simulations have been carried out separately
on the manipulator system and on the truss system,
in order to set up and verify the capacity of the neural
networks for the identification and control during de-
coupled dynamics of the multibody components. Af-
ter this first phase, simulations on the complete sys-
tem truss-manipulator were performed, considering
both the acrobat maneuver and the grub mancuver,
as previously described.

In this section only the results corresponding to the
acrobat maneuver of the manipulator moving on the
truss will be presented. This because that maneu-
ver induces on the truss acceleration perturbations
almost one order of magnitude greater than the grub
maneuver, so it is more interesting to analyze from
the point of view of the interactions between the ma-
nipulator system and the truss system. The results
presented will be those relative to one step of the ma-
neuver, since this is representative of the typical be-
havior of the system as the manipulator moves from
one end of the truss to the opposite one. Figure 12
reports the angle displacements of the manipulater
links during the first step of the maneuver. At time
0 the manipulator is placed at one extremity of the
truss with joint 1 locked on it, link1 disposed normal
to the truss axis (angle displacement = 0) and link 2
parallel to the truss axis (angle displacement = m/2).
A first phase of manenver (between 0 and 18 8) brings
the manipulator to the typical starting configuration
of acrobat mancuver (see Fig.4.a). Then a first over-
turning, between 18 and approximately 32 s, and a
second overturning, after 32 s, brings the manipula-
tor to the final rest configuration. The truss control
is switched on at time equal to 18 s.

Figure 13 reports the control torques dp]‘)h?d to the
manipulator joints to execute the acrobat maneu-
ver. An interactive simulation achieves the connec-
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Fig.14. Forces applied by the robot joints locked to
the truss during acrobat maneuver.

tion and disconnection of the manipulator joints with
the truss. When a virtual proximity sensor infers that
the distance between the robot end effector and the
target node on the truss gets lower than lmm, the
simulation is stopped. At this point one end effector
is locked to the node and the other unlocked using a
special tool offered by ADAMS. Then the simulation
is started again.

Each time a joint is locked to a truss node the control
is stopped for two seconds to avoid integration prob-
lems due to the great variation of dynamic quantity.
In this transition phase the neural networks are dis-
abled to avoid identification and control instability
caused by the low input values.

Figure 14 shows a typical example of how the forces
are transmitted by the manipulator to the truss. Each
time a new rotation of one link of the manipulator is
commanded, a peak in the truss reaction force ap-
pears. This produces obviously a peak in the truss
acceleration, as will be shown further on, but with
no consequences on the global performances of either
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Fig.16. Mean square errors of the truss identification
and truss control neural networks.

truss or manipulator, which can complete the ma-
neuver safely and precisely. This is mainly due to the
fact that all the neural networks have been trained
correctly to withstand this level of disturbances.
Figure 15 reports the acceleration measured by the
sensor mounted at the extremity of the truss, where
the maneuver hegins; the acceleration trend measured
by the other three sensors are similar to the former
one. The synaptic weights of both the identification
and the control networks are initialized, before the
maneuver, using the values saved at the end of the set
up tests, carried out separately on the manipulator
and the truss. The presence of the control makes the
acceleration level about 50% lower with respect to the
case without control.

Figure 16 represents the errors driving the learning
algorithms of the truss identification and control net-
works. It is possible to notice that, each time a new
overturning phase of the maneuver begins, there is a
learning period for the neural networks. During those
periods the mean square errors rise, then they rapidly
decrease again. Morcover the learning process of the
identification net results faster than the equivalent
process for the control net, as it should be.
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CONCLUSIONS

An active control system for a space multibody sys-
tem, constituted of a manipulator moving on a truss
has been presented. Truss shape control and manipu-
lator positioning control are realized using recurrent
neural networks controllers. Recurrent neural net-
works are used also for system identification purpose.
The obtained results demonstrate the good adapt-
ability of the neural architecture oscillation control
to the relevant variations of the inertial characteris-
tics, induced by the movement of the manipulator on
the truss.

During the maneuver the identification and con-
trol networks are started up with the final synaptic
weights of previous training phases, operated sep-
arately on the manipulator and truss subsystems.
Then networks become able to identify and control
the overall system.

ACKNOWLEDGMENTS

ASI (Italian Space Agency) has supported this re-
search under contract ASI ARS-96-127.

APPENDIX

Learning Algorithms for the Identification and
Control Networks

In the following, the superscripts ¢de and con refer
the related parameters to identification and control
networks respectively, no and nho indicate the num-
ber of visible and hidden neurons of the identification
network, ni and nhi are the number of visible and
hidden neurons of the control network. The vector u
is the concatenated input to the network, v is the neu-
ral activity, E is the error function to be minimized,
a and ( define the neuron function, ¢’ is the first
derivative of the sigmoidal activation function and 8§
is the Kronecker delta.
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